
FAST AND MEMORY EFFICIENT GPU-BASED
RENDERING OF TENSOR DATA

Mario Hlawitschka*, Sebastian Eichelbaum#, and Gerik Scheuermann*

University of Leipzig
PF 100920, 04009 Leipzig

*{hlawitschka,scheuermann}@informatik.uni-leipzig.de
#mai03jnw@studserv.uni-leipzig.de

ABSTRACT

Graphics hardware is advancing very fast and offers new possibilities to programmers. The new features can be used in
scientific visualization to move calculations from the CPU to the graphics processing unit (GPU). This is useful
especially when mixing CPU intense calculations with on the fly visualization of intermediate results. We present a
method to display a large amount of superquadric glyphs and demonstrate its use for visualization of measured second-
order tensor data in diffusion tensor imaging (DTI) and to stress and strain tensors of computational fluid dynamic and
material simulations.

KEYWORDS

Tensor visualization, hardware acceleration, glyph rendering, GPU

1. INTRODUCTION

During the last years modern graphics hardware advanced very fast and with the introduction of shader
programs and more recently high level shading languages enabled a new way to interfere into the normal
rendering pipeline. Programmable shading can not only be used for enhancing surface features but to move
parts of the calculation to the GPU, nowadays a fast and highly parallelized computer on its own. This
influences not only traditional computer graphics applications but is used to develop advanced visualization
techniques or improve existing ones in speed and visual quality.

Glyphs are a very basic but useful tool to visualize local information. For symmetric second-order
tensors, i.e., symmetric matrices, tensor glyphs provide a useful tool to represent the full tensor information.
In contrast to volume rendering of tensor data or tensor splats (Benger and Hege, 2004), their well-defined
boundaries make them useful for quantitative visualization.

We use the features of modern graphic cards to implement a general and flexible version of tensor glyphs
called superquadric tensor glyphs introduced by Kindlmann (2004). Our approach allows the interactive
manipulation of glyph parameters, as the data only needs to be prepared for the GPU once. In addition to that,
it frees the CPU from doing additional preprocessing of graphic data and therefore is useful when combined
with animation as the sole responsibility of the CPU is to provide the raw tensor data. The GPU then takes all
the action required for rendering the glyph described by an implicit surface.

2. BACKGROUND

According to Kindlmann (2004) a superquadric tensor glyph is defined by the surface given by the implicit
function

q(x,y,z):=(x2/α + y2/ β) α /β + z2/ β – 1 = 0. (1)

The parameters α and β define the shape of the tensor glyph and are calculated using the eigenvalues of the
tensor using the linear and planar anisotropy cl and cp defined by Westin et al (1997), and

α = (1− cp)γ , β = (1- cl)γ if cl ≥ cp (2)
α = (1− cl)γ , β = (1- cp)γ else.

The remaining parameter γ defines the sharpness of the glyph, i.e., a visual parameter defining how close the
glyph is to an ellipsoidal tensor glyph (γ = 0) or to a box glyph (γ = ∞). A detailed description of the
parameter can be found in the original paper by Kindlmann (2004). The resulting parameterized glyph is then
transformed by the tensor to represent its eigenvectors and eigenvalues.

In literature, there exist methods that can be used to render tensor glyphs, expecially the special cases of
superquadric glyphs with γ=0, i.e., spheres and ellipsoids (Sigg et al., 2006 and Ranta et al., 2007). Schirsky
et al. (2006) provide methods to render tubes. While rendering ellipsoids can be reduced to the implicit case
of rendering spheres, tubes visually provide a high degree of symmetry, as the main axis is constant and the
other two axes are rotationally symmetric. While there still is a point and plane symmetry in the superquadric
glyph, there is no trivial reduction to the spherical case as it is not a linear transformation of a sphere. Nor
does it provide the symmetry along two axes that is used when rendering tubes.

Another related field is the rendering of implicit surfaces. Here, most optimizations cannot be used
because of the in general non-algebraic character of the superquadric function. While methods like those of
Singh et al. (2007) are capable of rendering single glyphs at reasonable frame rates, they are not intended for
a large amount of independent surfaces.

The basic idea behind our solution is writing a highly specialized ray caster for solving Eq 1. Therefore, a
ray is parameterized at each pixel of the viewing plane, where to reduce the cost of shooting rays that miss
the object and therefore improve the overall speed, the viewing plane is reduced to a bounding box of the
projected glyph. As there is no analytic formula for the intersection of rays and superquadrics, we use a
combination of iterative approaches for finding the roots of the implicit function. Thus, good starting
parameters along the viewing ray need to be estimated in advance, as finding the iterative steps are the
crucial and cost intensive part of the algorithm and therefore the number of steps should be as small as
possible.

3. METHOD

The next section describes the transformation into the glyph's parameter space required to speed up most
future calculations. Then the estimation of two kinds of bounding boxes is described in Sections 3.2 and 3.3.
The main approach is described in Section 3.4 followed by a definition of stop criteria in Section 3.5. In
Section 3.6, we split the algorithm in two parts that will be mapped to the vertex and the fragment shader of
the GPU.

3.1 Transformation to Glyph’s Parameter Space

While all computations can be performed in a global coordinate system, it turns out, that most
calculations presented in succeeding sections become quite simple when performed in the glyph's parameter
space. This space is given uniquely if the tensor is not degenerate, i.e., at least two eigenvalues are the same,
or that one or more eigenvalues becomes zero. The second case can be either ignored, as in most cases a
tensor with a zero eigenvalue is meaningless, e.g., an eigenvalue smaller or equal to zero can not occur in a
diffusion tensor magnetic resonance scan — or a threshold for the eigenvector size can be provided to ensure
a certain minimal thickness of the glyph in all directions. The first case, in which eigenvalues are equal, does
not matter as long as the transformation is chosen uniquely throughout the calculation, which is guaranteed,
as in our implementation the coordinate system is set up once per glyph. The transformation from tensor
space to world space is given by the eigenvector representation of the tensor, i.e, a matrix whose columns are
represented by the scaled eigenvectors

 M = (λ1e1 λ2e2 λ3e3). (3)
The inverse transformation obviously is defined the inverse scaled eigenvectors as row vectors:

M-1 = (1/λ1e1, 1/λ2e2, 1/λ3e3). (4)

The calculation of the coordinate system is performed in the vertex shader of the graphics board using the
analytic approach by Hasan et al. (2001) that has been implemented using one square root and three
trigonometric operations.

3.2 Estimating a Sprite Bounding Box

We estimate the glyph's bounding box on-the-fly in the vertex shader to avoid too many rays to be started
per glyph. As including the sharpness parameter γ we do a worst-case approximation of the bounding box, by
setting γ=∞ where the glyph becomes a box. When transforming the eigenvectors into viewing space, they
represent offsets to the center vertex that are used to compute a 2D bounding box in the viewing plane.
Finally the plane is parameterized by transformed coordinates of the eye ray. This lets us use the internal
interpolation of the graphic hardware that computes the final viewing ray parameters.

3.3 Volumetric Bounding Box

While the sprite only provides a raw estimate of a bounding box, we use a volumetric clipping of the rays
for two purposes: First, the bounding box check enables us to discard most rays that will not hit the glyph,
and second, it provides clipping parameters along the ray that provide good seeding values for the iteration
step described later.
Since we transformed the ray into the glyph coordinate system we can do a fast test if the ray hits the glyph
bounding box. This is now done by a simple intersection test with the unit cube. Therefore we have to
intersect the ray with, in the worst case, 6 planes. The ray will most probably hit all non parallel planes. But
only one hit is of interest: the hit where the ray enters the unit cube. A quick test, whether a side of the cube
is a front or a back plane can be performed by testing whether the ray faces the cube's surface normal, i.e.,
⟨n,v⟩ < 0. As the cube is axis aligned, the normal is parallel to the coordinate axes, and therefore this results
in testing the sign of the corresponding direction vector component. This test will be successful for at most
three planes. Those planes have to be tested if the ray hits it in the interval of [-1, 1] in both directions on
plane. This is done by getting the remaining two coordinates of the point at which the ray hits the plane and
test this point to be in the mentioned interval, in the both plane directions. If this is the case we found the
plane where the ray enters the cube and no further comparisons are required. The already computed
parameter of this point is used as seed for the iterative root search described in the next section and ensures
that we always start iteration close to the surface of the glyph. Fig. 1 illustrates the alignment of the sprite and
the volumetric bounding box in relation to an example glyph. In addition to the bounding box check, we
know that the maximal value of t is reached at the point, where the ray would intersect the ellipsoid spanned
by the scaled eigenvectors, which is in the glyph's coordinate system the unit sphere. This is always true as
the glyph is a convex shape bounded by the ellipsoid and the box. Therefore, a simple ray-sphere intersection
leads to a maximal value of t for those cases, where the sphere is hit. This may be kept in mind for further
optimizations but is not used in our current implementation.

Figure 1: Shader output that visualizes both types of bounding box: The sprite bounding box is shown in black while the
volumetric bounding box is shown around the glyph in red (light gray). Only rays in the red area are computed, all other

points are discarded immediately.

3.4 Raycasting

We start by defining the parameterized viewing ray r(t):=p + t v, where v is the viewing direction vector
and p the point on the projection plane in the glyph coordinate system. Second, we need the surface function
evaluated along the ray, which leads us to a one-dimensional function

q(r(t)):= (rx(t)2/α + ry(t)2/α)α/β + rz(t) 2/β - 1, (5)
whereof we have to compute the roots, especially find the smallest t with q(r(t)) = 0. As there is no analytical
way of solving this equation, numerical methods have to be used for solving it. There are many methods in
literature for finding roots of one dimensional functions but as we are limited by the flexibility of the GPU,
we use a Newton approach because sphere tracing has proven to be suitable for similar applications here.
The main advantage is, that it does not require the calculation of higher derivatives, leading to additional
evaluations of functions known to be slow on the GPU. In contrast to other papers, an implementation of
sphere casting is not suitable here, as the estimates turn out to be worse than those of Newton's approach.

It definitely is a trade-off between the number of iterations and the complexity and computational efforts
taken in the main loop but it can be seen from the results in Section 5 that the number of iterations required is
low and therefore the algorithm performs good. The following pseudo-code fragment shows the main loop of
the fragment shader, the method is illustrated in Fig. 2, too. We test the hit criterion first because it increases
the overall performance:

float t = getBBoxIntersection();
for (i=0, i < maxNumSteps, i++)
{
 vec3 r=t*v + p; // evaluate ray at position t
 float sq=q(r); // superquadric function at current position
 vec3 gradient = grad(q(r)); // gradient at current position
 float sqd = dot(gradient, v);// first derivative
 float t2=t-(sq / sqd); // the newton step

 if (hitCriteria(...)) // hit criteria fulfilled?
 {
 // lighting and depth calculations
 // the surface normal is stored in the gradient vector
 break; // stop iteration
 }

 if (breakCriteria(...)) // there will be no hit for sure
 discard; // do not paint anything
 t=t2;
}

Figure 2: An Example of the newton approach. Left: We stop the iteration when the Newton step size reaches a pre-

defined epsilon threshold. Right: If the gradient direction indicated by red bars flips, the glyph is missed and the iteration
is stopped.

Because of our setup, the Newton iteration always approaches the glyph from outside and we descent the

gradient until we reach a root of the function. As the gradient can only flip when the function's gradient is
orthogonal to the ray, it becomes obvious that, if the current position is not completely tangent to the surface,
we already missed the glyph. Therefore, the first stop criterion is the step size. If it becomes negative, we
already missed the glyph for sure. This frees us from doing a lot of unneeded iteration steps as, e.g.,
approaches like sphere tracing usually do when passing close to a surface but fail to hit the surface.
While a test for decreasing step size usually terminates the Newton iteration, we test for |q(r(t))| - ϵ < 0, we
already have to evaluate the function which means, it has no additional cost. As this test may fails in rare
cases, where the viewing ray is almost orthogonal to the surface, we add a second hit criterion. This is the

abortion criterion of the Newton iteration: If the step size along the ray becomes smaller than a threshold, we
assume to have hit the glyph.

3.4 Splitting the Calculation

As mentioned previously, a large part of the calculation has to be done once per glyph only. Therefore,
almost every calculation can be done in the vertex shader. The following code falls into the responsibility of
the vertex shader to

- compute the tensor decomposition (if required and not done by the CPU),
- compute 1-cl, 1-cp,
- compute the sprite coordinates
- compute the transformation matrix
- compute the (transformed) ray that will interpolated by the GPU,
- and compute the base color of the glyph.

The remaining responsibility of the fragment shader is to
- compute the bounding box intersection,
- compute the Newton iteration,
- and finally, if the glyph is hit, compute a neat surface shading and the depth component.

4. IMPLEMENTATION

We implemented the presented method into an existing visualization tool for medical and computational
fluid dynamics data using C++, OpenGL and OpenGL Shading Language (GLSL). Due to limitations of our
graphics hardware relating the size of point sprites, we use a GL_QUAD per glyph to create the graphic
primitives, which increases the memory use slightly but still performs well. The depth buffer is used to
render intersecting glyphs correctly.

While a set of different shading models are implemented in our system, we use the Blinn-Phong
illumination model (Blinn, 1977) throughout this paper to keep the results comparable.

5. RESULTS

We tested the algorithm on multiple real-life data sets wherefrom we present two in this paper to illustrate
the capabilities. The first data set is the well-known push-pull tensor data set shown in Fig. 3. We use this
quite simple data set to test the scaling and color coding in the case of negative eigenvalues.

The second data set has been provided by the Max Planck Institute for Human Cognitive and Brain
Science, Leipzig, Germany and shows a diffusion weighted magnetic resonance scan of a human brain. The
raw data has been converted to a second-order tensor representation using a least-squares fit Basser et al.
(1994) and contains about one million sample points on a regular grid. The tensors are masked and a total of
about 100.000 valid glyphs inside the brain are sent to the graphics board where a filtering by fractional
anisotropy takes place to avoid visualization of outliers and remaining data outside the brain.

Each change of parameters, like FA thresholds or changing the parameter γ takes typically about 50 µs of
CPU time. While taking a closer look at all different types of glyphs, it has proven that a maximum of ten
iterations for the Newton approach is enough to render all glyphs of the data set correctly. Most iterations
after only three steps. This proves that seeding the glyphs at the bounding box is a good estimate for the start
parameter t.

A test with a delta-wing data set containing about four million tensors has shown, that this amount of
glyphs can be visualized using our approach at interactive frame rates. Obviously, visual clutter because of
the limitation of number of pixels on screens of desktop workstations and PCs renders the visualization of
this amount of glyphs non-practical but it could be useful on larger display walls or when implemented in a
cave where larger screen surfaces are available.

6. CONCLUSION AND FUTURE WORK

We provided a way of implementing the superquadric tensor glyph on the GPU to make it a usable tool in
combination with other tools that are heavily using the CPU (e.g., interactive glyph placement by
Hlawitschka et al. (2007)) to provide visual feedback at interactive frame rates. While it already performs
well on present data sets, there are still some improvements for the near future. First, we want to evaluate
how far we can limit the parameter space for α, β and γ to perform most of the time-consuming evaluations
by using one- and two-dimensional texture lookups. For standard applications, clipping α and β values to
[0.2,1.0] limits the area of powers calculated to [1, 10] (terms 2/α and 2/β and [0, 5] (terms α/β and α/β-1 in
the derived superquadric function of Eq. 1).

Although our new method reduces the amount of memory tremendously, it still is limited to the GPU's
main memory and we want to couple the visualization with the underlying acceleration structure provided
computed for our data set to be able to perform fast clipping of the data outside the viewport and implement
level-of-detail approaches for glyphs further away from the viewer.

A further way to speed up the calculation would be the use of deferred shading as used in Sigg et al.
(2006) Although computing the actual shading is the least part of the calculation, it may provide ways to
perform early ray termination to discard fragments that are occluded by other glyphs early.

ACKNOWLEDGEMENT

We thank the Max Planck Institute for Human Cognitive and Brain Science, Leipzig, Germany for providing
the data set used in this paper. We thank the image and signal processing group at the University of Leipzig
for providing the FAnToM visualization system and Gordon Kindlmann for the valuable discussion.

REFERENCES

Basser, P., Mattiello, J. & LeBihan, D. (1994), ‘Estimation of the effective self–diffusion tensor from the NMR spin
echo’, Journal of Magnetic Resonance 3(103), 247–254.

Benger, W, Hege, H.-C, (2004) ‚Tensor Splats’, In Proceedings of the Conference on Visualization and Data Analysis
Blinn, J. F. (1977), ‘Models of light reflection for computer synthesized pictures’, Proc. 4th annual conference on

computer graphics and interactive techniques. pp. 192–198.
Hasan, K. M., Basser, P. J., Parker, D. L. & Alexander, A. L. (2001), ‘Analytical computation of the eigenvalues and

eigenvectors in DT–MRI’, Journal of Magnetic Resonance 152, 41–47.
Hlawitschka, M., Scheuermann, G., Hamann, B. (2007) ‚Interactive Glyph Placement for Tensor Fields’, Advances in

Visual Computing: Third International Symposium, ISVC, Lake Tahoe, Nevada/California (Lecture Notes in
Computer Science, LNCS 4841 and LNCS 4842, Springer), George Bebis, Richard Boyle, Bahram Parvin, Darko
Koracin, Nikos Paragios, Syeda--Mahmood Tanveer , Tao Ju, Zicheng Liu, Sabine Coquillart, Carolina Cruz-Neira,
Torsten Möller, and Tom Malzbender eds.

Kindlmann, G. (2004), ‘Superquadric tensor glyph’, Joint EUROGRAPHICS – IEEE TCVG Symposium on Visualization
Ranta, S. M., Singh, J. M. & Narayanan, P. J. (2006/2007), ‘GPU ob jects’, Lecture Notes in Computer Science

4338/2006.
Schirski, M., Bischof, C. & Kuhlen, T. (2006), Interactive Particle Tracing on Tetrahedral Grids Using the GPU, In

‘Proceedings of Vision, Modeling, and Visualization (VMV) 2006’, pp. 153–160.
Sigg, C., Weyrich, T., Botsch, M. & Gross, M. (2006), ‘GPU–based ray–casting of quadric surfaces’, Eurographics

Symposium on Point–Based Graphics .
Singh, J. M. & Narayanan, P. J. (n.d.), Real-time ray-tracing of implicit surfaces on the GPU, Technical Report

IIIT/TR/2007/72, Centre for Visual Information Technology, International Institute of Information Technology,
Hyderabad 500032. India.

Westin, C.-F., Peled, S., Gudbjartsson, H., Kikinis, R. & Jolesz, F. A. (1997), Geometrical diffusion measures for MRI
from tensor basis analysis, ‘ISMRM ’97’, Vancouver Canada, p. 1742.

Figure 3: Glyphs in a double point data set deviator field. Overview(left) and close-up (right).

Figure 4: A full brain scan of diffusion tensors visualized using our approach for different parameters of γ. Left column:

full brain. Right column: a zoomed view of the left column. γ is set to 0.0, 3.0 and 20.0 from top to bottom.

