
Fabric-like Visualization of Tensor Field Data on
Arbitrary Surfaces in Image Space

Sebastian Eichelbaum, Mario Hlawitschka, Bernd Hamann, and Gerik
Scheuermann

Abstract
Tensors are of great interest to many applications in engineering and in medical

imaging, but a proper analysis and visualization remains challenging. It already has
been shown that, by employing the metaphor of a fabric structure, tensor data can
be visualized precisely on surfaces where the two eigendirections in the plane are
illustrated as thread-like structures. This leads to a continuous visualization of most
salient features of the tensor data set.

We introduce a novel approach to compute such a visualization from tensor field
data that is motivated by image-space line integral convolution (LIC). Although our
approach can be applied to arbitrary, non-selfintersectingsurfaces, the main focus
lies on special surfaces following important features, such as surfaces aligned to the
neural pathways in the human brain. By adding a postprocessing step, we are able
to enhance the visual quality of the of the results, which improves perception of the
major patterns.

1 Motivation and Related Work

Since the introduction of tensor lines and hyperstreamlines [6], there have been
many research efforts directed at the continuous representation of tensor fields, in-
cluding research on tensor field topology [11, 23, 22]. Zhengand Pang introduced
HyperLIC [30], which makes it possible to display a single eigendirection of a tensor
field in a continuous manner by smoothing a noise texture along integral lines, while

Sebastian Eichelbaum· Gerik Scheuermann
Abteilung für Bild- und Signalverarbeitung, Institut für Informatik, Universität Leipzig, Germany,
e-mail:{eichelbaum| scheuermann}@informatik.uni-leipzig.de

Mario Hlawitschka· Bernd Hamann
Institute for Data Analysis and Visualization (IDAV), Department of Computer Science, University
of California, Davis, CA, e-mail:{hlawitschka| bhamann}@ucdavis.edu

1

2 Sebastian Eichelbaum, Mario Hlawitschka, Bernd Hamann, and Gerik Scheuermann

neglecting secondary directions. Recent approaches to visualize Lagrangian struc-
tures on tensor fields [12] provide information on one chosentensor direction and
are especially useful for diffusion tensor data, where the main tensor direction can
be correlated to neural fibers or muscular structures, whereas the secondary direc-
tion only plays a minor role. More recently, Dick et al. [7] published an interactive
approach to visualize a volumetric tensor field for implant planning.

Hotz et al. [13] introduced Physically Based Methods (PBM) for tensor field
visualization in 2004 as a means to visualize stress and strain tensors arising in ge-
omechanics. A positive-definite metric that has the same topological structure as
the tensor field is defined and visualized using a texture-based approach resembling
LIC [4]. Besides other information, eigenvalues of the metric can be encoded by free
parameters of the texture definition, such as the remaining color space. Whereas the
method’s implementation for parameterizable surfaces that are topologically equiv-
alent to discs or spheres is straightforward, implementations for arbitrary surfaces
remains computationally challenging. In 2009, Hotz et al. [14] enhanced their ap-
proach to isosurfaces in three-dimensional tensor fields. Athree-dimensional noise
texture is computed in the data set and a convolution is performed along integral
lines tangential to the eigenvector field. LIC has been used in vector field visualiza-
tion methods to imitateSchlieren patterns on surfaces that are generated in experi-
ments where a thin film of oil is applied to surfaces, which show patterns caused by
the air flow. In vector field visualization, image-space LIC is a method to compute
Schlieren-like textures in image space [27, 28, 17, 9], intended for large and non-
parameterized geometries. Besides the non-trivial application of image-space LIC
to tensor data, image-space LIC has certain other drawbacks. Mainly because the
noise pattern is defined in image space, it does not follow themovement of the sur-
face and, therefore, during user interaction, the three-dimensional impression is lost.
A simple method proposed to circumvent this problem is animating the texture pat-
tern by applying randomized trigonometric functions to theinput noise. Weiskopf
and Ertl [26] solved this problem for vector field visualization by generating a three-
dimensional texture that is scaled appropriately in physical space.

We developed and implemented an algorithm similar to the original PBM but
for arbitrary non-intersecting surfaces in image space. Our algorithm can perform at
interactive frame rates for large data sets on current desktop PCs. We overcome the
drawbacks present in image-space LIC implementations by defining a fixed param-
eterization on the surface. Thus, we do not require a three-dimensional noise texture
representation defined at sub-voxel resolution for the dataset. Our approach is ca-
pable of maintaining local coherence of the texture patternbetween frames when
(1) transforming, rotating, or scaling the visualization,(2) changing the surface by,
e.g., changing isovalues or sweeping the surface through space, and (3) changing the
level of detail. In addition, we implemented special application-dependent modes to
ensure our method integrates well with existing techniques. Besides this, we also
apply several postprocessing steps to further increase thevisual quality and clarity
of the shown structures.

Fabric-like Visualization of Tensor Field Data on Arbitrary Surfaces in Image Space 3

Geometry

Tensors

Noise

Projection

βx,y

νλ
1

νλ
2

depth

Advection

ex,y
Silhouette
Detection

FA, L, λ2

Advection
Step k

Compositing

Final
Image

Post-
processing

Fig. 1 Flowchart indicating the four major steps of the algorithm:projection, which transforms the
data set in an image-space representation and produces the initial noise texture on the geometry;
silhouette detection, required for the advection step and the final rendering;advection, which
produces the two eigenvector textures;compositing, which combines intermediate textures; and
thepostprocessing, which adds additional shading and improves the perceptualquality of the final
visualization. Between consecutive steps, the data is transferred using textures.

2 Method

We employ a multi-pass rendering technique that consists offour major rendering
passes as outlined in Figure 1. After generating the basic input textures once, the
first pass projects all required data into image space. Pass two performs a silhou-
ette detection that is used to guarantee integrity of the advection step computed by
multiple iterations of pass three. Eventually, pass four composes the intermediate
textures in a final rendering.

2.1 Projection into Image Space

First, we project the data into image space by rendering the surface using the default
OpenGL rendering pipeline. Notably, the surface does not need to be represented by
a surface mesh. Any other representation that provides proper depth and surface nor-
mal information works just as well (e.g., ray-casting methods for implicit surfaces,
cf. Knoll et al. [16]). In the same rendering step, the tensorfield is transformed from
world space to object space, i.e., each tensorT , that is interpolated at the point on
the surface from the surrounding two- or three-dimensionaltensor field is projected
onto the surface by

T ′ = P ·T ·PT
, (1)

with a matrixP defined using the surface normaln as

P =





1−n2
x −nynx −nznx

−nxny 1−n2
y −nzny

−nxnz −nynz 1−n2
z



 . (2)

4 Sebastian Eichelbaum, Mario Hlawitschka, Bernd Hamann, and Gerik Scheuermann

The camera viewing system configuration and the available screen resolution im-
ply a super- or sub-sampling of the data. We obtain an interpolated surface tensor
in every pixel which is decomposed into the eigenvector/eigenvalue representation
using a method derived from the one presented by Hasan et al. [10]. These eigen-
vectors, which are still defined in object space, are projected into image space using
the same projection matricesMM andMP used for projecting the geometry to image
space, usually the standardmodelview andprojection matrices OpenGL offers:

v′λi
= MP ×MM × vλi

, with (i ∈ 1,2). (3)

Even in the special case of symmetric second-order tensors in R3, which, in
general, have three real-valued eigenvalues and three orthogonal eigenvectors in
the non-degenerate case, the projected eigenvectors are not orthogonal in two-
dimensional space. To simplify further data handling, we scale the eigenvectors as
follows:

‖v‖∞ = max{|vx|, |vy|} (4)

v′′λi
=

v′λi

‖v′λi
‖∞

with i ∈ {1,2}, and ‖v′λi
‖∞ 6= 0 (5)

The special case‖v′λi
‖∞ = 0 only appears when the surface normal is perpendicular

to the view direction and, therefore, can be ignored. The maximum norm (L∞-norm)
ensures that one component is 1 or−1 and, therefore, one avoids numerical insta-
bilities arising when limited storage precision is available, and can use memory-
efficient eight-bit textures.

2.2 Initial Noise Texture Generation

In contrast to standard LIC approaches, to achieve a proper visual representation of
the data, high-frequency noise textures, such as white noise, are not suitable for the
compositing of multiple textures. Therefore, we compute the initial noise texture
using the reaction diffusion scheme first introduced by Turing [24] to simulate the
mixture of two reacting chemicals, which leads to larger butsmooth “spots” that are
randomly and almost uniquely distributed (cf. Figure 2, right). For the discrete case,
the governing equations are:

∆ai, j = F(i, j)+ Da · (ai+1, j + ai−1, j + ai, j+1+ ai, j−1−4 ·ai, j),

∆bi, j = G(i, j)+ Db · (bi+1, j + bi−1, j + bi, j+1+ bi, j−1−4 ·bi, j),where

F(i, j) = s(16−ai, j ·bi, j) andG(i, j) = s(ai, j ·bi, j −bi, j −βi, j).

(6)

Here, we assume continuous boundary conditions to obtain a seamless texture in
both directions. The scalars allows one to control the size of the spots where a
smaller value ofs leads to larger spots. The constantsDa andDb are the diffusion

Fabric-like Visualization of Tensor Field Data on Arbitrary Surfaces in Image Space 5

constants of each chemical. We useDa = 0.125 andDb = 0.031 to create the input
textures.

2.3 Noise Texture Transformation

Mapping the initial texture to the geometry is a difficult andapplication-dependent
task. Even though there exist methods to parameterize a surface, they employ restric-
tions to the surface (such as being isomorphic to discs or spheres), require additional
storage for texture atlases (cf. [19, 15]) and, in general, require additional and often
time-consuming pre-processing.

Another solution, proposed by Turk et al. [25], calculates the reaction diffusion
texture directly on the surface. A major disadvantage of this method is the compu-
tational complexity. Even though these approaches providealmost distortion-free
texture representations, isosurfaces, for example, may consist of a large amount of
unstructured primitives, which increases the pre-processing time tremendously.

Whereas previously published approaches for image space LIC either use pa-
rameterized surfaces to apply the initial noise pattern to the surface or use locally or
globally defined three-dimensional textures [26], we definean implicit parameter-
ization of the surface that provides an appropriate mappingof the noise texture to
the surface.

Fig. 2 Illustration of the reaction diffusion texture used (right) and the noise texture mapped to
geometry (left).

We start by implicitly splitting world space in voxels of equal size, filling the
geometry’s bounding box, i.e., we define a regular grid. Eachvoxel i is described by
its base coordinatebi and a constant edge lengthl. The seamless reaction diffusion
texture is mapped to the surface of each of these voxels. To assign a texture coor-
dinate to each vertex, the object space coordinate is transformed to the voxel space
that is described by a minimum and maximum coordinate whose connecting line
is the bounding box’ diagonal. Pointsvg on the geometry are transformed tovvoxel

using

6 Sebastian Eichelbaum, Mario Hlawitschka, Bernd Hamann, and Gerik Scheuermann

Fig. 3 Comparison of two different values ofl to demonstrate the possibility for dynamic refine-
ment of the input noise to achieve different levels of detail.

vvoxel = vg ·









l 0 0 −bminx

0 l 0 −bminy

0 0 l −bminz

0 0 0 1









(7)

and transformed into the local coordinate system by

vhit = vvoxel −⌊vvoxel⌋. (8)

The two texture coordinates are chosen to be those two components ofvhit that form
the plane that is closest to the tangential plane of the surface in this point.

t = (vhiti ,vhit j), with i 6= j 6= k∧ (nk = max{ni,n j,nk}). (9)

In other words, this method transforms the world coordinatesystem to a system
defined by one voxel, ensuring that every component of every point vhit is in [0,1].
The texture coordinate is determined by the surface’s normal and, in particular, by
the voxel side-plane whose normal is most similar to the surface’s normal (in terms
of angle between them). The use of the term “voxel” is for illustration purposes
only; those voxels are never created explicitly.

Regardless of its simplicity, this method supports a continuous parameterization
of the surface space that only introduces irrelevant distortions for mapping the noise
texture (cf. Figure 2). The mapping is continuous but notC1-continuous, which is
not required for mapping the noise texture as discontinuities in the first derivatives
automatically vanish in the advection step.

Another positive aspect of this mapping is the possibility of a change of scale
that is not available in the approaches of, e.g., Turk et al. [25]. By changing the
size of voxels during the calculation, different frequencies of patterns can easily be
produced and projected onto the geometry. This capability allows one to change the
resolution of the texture as required for automatic texturerefinement when zooming.
A comparison of two different levels of detail is shown in Figure 3.

Fabric-like Visualization of Tensor Field Data on Arbitrary Surfaces in Image Space 7

2.4 Silhouette Detection

To avoid advection over geometric boundaries, a silhouetteof the object is required
to stop advection in these areas [17]. Otherwise, tensor advection would lead to a
constant flow of “particles” across surface boundaries which makes the surface’s
geometry and topology unrecognizable.

A standard three-by-three Laplacian filter, defined by the convolution mask




0 1 0
1 −4 1
0 1 0



 (10)

applied to the depth values followed by thresholding, has proven to be suitable for
our purposes. The silhouette imageex,y for each pixel(x,y) is stored in the red color
channel of its output texture.

2.5 Advection

We have discussed how to project the geometry and the corresponding tensor field
to image space. With the prepared image space eigenvectors and the input noise tex-
ture, mapped to geometry, advection can be done. We use a simple Euler integration
applied to both vector fields. With Euler’s method a particlecan be followed along
a stream. In our case, we do not calculate streamlines at eachposition of both vector
fields, as normally done in LIC. We directly advect the noise input texture with the
given vector fields, which has the same result as locally filtering the data along pre-
computed streamlines. This decision was based on the fact that massively parallel
architectures like modern GPUs are able to perform this taskin parallel for each
pixel several hundred times per second. Formally, the advection step can be sum-
marized as follows: First, we assume an input fieldP to be a continuous function,
defined over a two-dimensional domain:

fP : (x,y) → p, with x,y, p ∈ [0,1], (11)

i.e., it is a function returning the input value of the fieldP at a given position. Conti-
nuity is ensured with interpolating values in-between. With this in mind, the iterative
advection on each point(x,y) on the image plane can now be described by

∀x,y ∈ [0,1] : ∀λ ∈ {λ1,λ2} :

pλ
0 = βx,y,

pλ
i+1 = k ·βx,y +(1− k) ·

fpλ
i
((x,y)+ v′λ)+ fpλ

i
((x,y)− v′λ)

2
.

(12)

8 Sebastian Eichelbaum, Mario Hlawitschka, Bernd Hamann, and Gerik Scheuermann

Fig. 4 Advection texture after ten iterations. Left: red channel containingpλ1
9 , the advection image

of eigenvector field 1; right: green channel containingpλ2
9 , the advection image of eigenvector field

2.

The iterative advection process has to be done for each eigenvector field separately
with separate input and output fieldspi as shown in Figure 4. The value at a given
point is a combination of the input noise and the iterativelyadvected input noise
from the prior steps. Since the eigenvectorsv′λ j

do not have an orientation, the ad-
vection has to be done in both directions. The iteration can be stopped when the
value change exceeds a threshold.

2.6 Compositing

In a subsequent rendering pass, an initial fabric-like texture is composed. For the
sake of simplicity and the limitations of some graphics board, we split the com-
positing in an initial compositing of four textures followed by a postprocessing step
described in the next section, which mainly improves visualquality. Whereas pixels
that are not part of the original rendering of the geometry are discarded using the
information from the depth buffer, the color values for all other pixels(x,y) in image
space afterk iterations is defined as:

R(x,y) =
r · f

p
λ2
k

(x,y)

8 · f 2

p
λ1
k

(x,y)
+ ex,y + light(Lx,y),

G(x,y) =
(1− r) · f

p
λ1
k

(x,y)

8 · f 2

p
λ2
k

(x,y)
+ ex,y + light(Lx,y),

B(x,y) = ex,y + light(Lx,y),

(13)

wherepλ1
k andpλ2

k are the fields generated from the eigenvector advection ande is

Fabric-like Visualization of Tensor Field Data on Arbitrary Surfaces in Image Space 9

Fig. 5 The composited image produced by the compositing shader with lighting. Left: the whole
geometry. Right: a zoomed part of the geometry to show the still blurry fabric structure on the
surface.

the silhouette image. The scalar factorr is used to blend between the two chosen ten-
sor directions. Equation 13 is a weighting function that defines the influence of the
terms f

p
λ1
k

(x,y) and f
p

λ2
k

(x,y), which influence the green and red color channels, re-

spectively. By squaring the denominator, we emphasize the difference in both fields.
This approach creates a mesh resembling the tensor field’s structure. To reduce the
effect of light sources on the color coding, we use a separatelighting functionlight
that, while manipulating the intensity, does not affect thebase color of the mesh
structure. Even though Blinn-Phong shading [2] provides the required depth cues,
additional emphasis of the third dimension using depth-enhancing color coding has
proven to provide a better overall understanding of the data[5].

2.7 Postprocessing

Additional filters can be applied to the composed image, suchas contrast enhance-
ment or sharpening filters, which are commonly used in vectorfield LIC [26, 9].
Figure 5 shows the result of Equation 13 combined with Blinn-Phong shading after
applying a sharpening filter.

Bump mapping, first introduced by Blinn [3] to simulate three-dimensionality in
planar surfaces, can be used to improve spatial perception of the fabric surface. As
bump mapping is normally computed in world space, where the three-dimensional
tangent space is known, the textured surface would be required in world space,
whereas our texture is parameterized for use in image space.Transforming the mod-
ified normal, which is required for bump mapping and, in fact,depends on the gradi-
ent information on the surface, from image-space back to world-space is not a trivial
task, especially when using a perspective projection. Therefore, we use a modified
approach that can be applied in image space only.

10 Sebastian Eichelbaum, Mario Hlawitschka, Bernd Hamann,and Gerik Scheuermann

Bump mapping requires the surface normal at each point(x,y) of the surface,
which can be obtained using the gradient information on eachpixel of the surface
in image space:

g(x,y) = ||∇(R + G)(x,y)||. (14)

The resulting two-dimensional vectorg(x,y) describes the gradient on the image
plane using each pixel’s intensity. The blue color channel is not used as it does not
contain relevant information besides lighting and edges. It is also worth noting that
we exclude the lightLx,y and edge informationex,y from gradient calculation, as
we do lighting using bump mapping. Using this gradient, the new surface normal is
a weighted sum of the surface normal and the gradient, and is used for calculating
Phong lightingBx,y as seen in Figure 6.

Fig. 6 The final image produced by the postprocessing shader in combination with bump mapping,
the geometry’s Phong shading and combined edges. Left: standard bump mapping. Right: the same
zoomed part of the original geometry to show the effect of weighting the resulting Phong intensities
by the originalR(x,y) andG(x,y) intensities. This approach creates a more fabric-like impression
that can be misunderstood as rotating ribbons similar to stream ribbons.

Figure 6 (right) shows the additional scaling of the red and green color channels
by the original color intensities, to lead to a more fabric-like impression of the lines.
Equation 15 shows this in more detail:

Rb(x,y) = Bx,y(R(x,y)G(x,y)+ R2(x,y))+ ex,y + light(Lx,y),

Gb(x,y) = Bx,y(R(x,y)G(x,y)+ G2(x,y))+ ex,y + light(Lx,y).
(15)

With the help of bump mapping, we achieve a better spatial impression of the
fabric-like pattern. Besides this, postprocessing filterscan help to avoid blurry struc-
tures.

A further visual improvement can be achieved by interpreting the structure on
the surface as streamtubes [29] along the surface. Therefore an approach similar to
the ones in [18, 20] is appropriate to create the visual effect of streamtubes on the
geometry’s surface, without actually creating tubes. First, we need to have some

Fabric-like Visualization of Tensor Field Data on Arbitrary Surfaces in Image Space 11

kind of tangential coordinate system, similar to the one needed for bump mapping.
Since our bump mapping is done in image space, the normal of the image plane is
(0,0,1)T . The eigenvectorsv′λ1

andv′λ2
in Equation 3 from the tensor field in image

space can be used as the tangent for each field. These tangentsdenote the direction
of the tube along the surface and, together with the normal, define the binormal
vector, which is nearly equal to the gradient vector. In practice, it normally is not
exactly the same. The binormalb for each eigenvector fieldi is defined as:

bi = (0,0,1)T × v′λi
, with i ∈ {0,1}. (16)

These binormals can be calculated for each point on the surface. To finally determine
the point’s actual position on the tube, described by the eigenvectorsv′λi

, one has to
find the border of the fabric structure that has been created by the compositing step.
Mathematically, this can be expressed in this way:

B ={s|R(sb1) < ε ∧ s ∈R}∧ (ap,an) ∈ P(B), with

ap =min{s|s ∈ B∧ s ≥ 0}

an =max{s|s ∈ B∧ s < 0}.

(17)

In other words, we find the smallest scaling factorsan andap which scale the binor-
mal vectorsb1 andb2 in both directions, so that they point on a area below a given
thresholdε in the composited image from the prior step, therefore pointing to the
border of the tube. As the mapping functionsR andG, from Equation 13, only need
two-dimensional positionsx andy, the binormal’sx andy-components are used and
thez-component is ignored, as it is always zero. The same factorsap andan for the
second eigenvector field are calculated using the green color channel of the compos-
ited image, which are used in the same way as described below to render the tubes
for the second eigenvector field. The width of the tube at a given point is defined by
ap + an. The width of the tube is set in relation with the factorap to find the actual
position of the current point(x,y) on the tube by using:

p =
ap

ap + an
∈ [0,1] , (18)

which finally is squared to describe the round surface of a tube:

r =

{

(1−2p)2 if p ≥ 0
−(1−2p)2 if p < 0

with ratio ∈ [−1,1] . (19)

The value ofr describes the ratio between the normal completely on the plane (with
a zero z-component) and the normal completely pointing towards the camera (with
a z-component of one):

n = (1− r)(0,0,1)T + rb0 (20)

The normaln is used to calculate the Phong shading on the surface and produces
the tube-like effect with proper spatial impression on the surface, as can be seen in
Figure 7.

12 Sebastian Eichelbaum, Mario Hlawitschka, Bernd Hamann,and Gerik Scheuermann

The artifacts seen in Figure 7 result from the local approachwe are using to
calculate the tubes. As we do not integrate along the eigenvector-field, there may be
discontinuities along a tube in the produced image. There are also artifacts caused by
a blurry input field, where borders cannot be found clearly. But, since the frequency
of the fabric structure is normally much higher, these effects are not visible anymore,
as can be seen in Figure 7, left.

Fig. 7 Left: Interpreting the final image from Figure 5 as streamtubes along the geometry’s sur-
face, and lighting them accordingly, results in a less blurry surface. Right: zoomed part of the left
geometry to show the tube effect. Although there are plenty of artifacts in the zoomed image, they
do not influence the overall impression of images not zoomed as much. Especially, such strongly
zoomed images are not useful for gathering an overview over the tensor field’s structure.

2.8 Implementation

Our implementation is not limited to a special kind of geometry. It is able to handle
almost every tensor field defined on a surface. It is, for example, possible to calculate
an isosurface on a derived scalar metric, like fractional anisotropy, or on a second
data set to generate a surface in a three-dimensional data domain. Other methods
include hyper-stream surfaces [6], wrapped streamlines [8], or domain-dependent
methods like dissection-like surfaces presented in [1]. The only requirement for the
surface is that it is non-selfintersecting and that smooth normals are provided as they
are required for the projection step and for proper lighting. The noise texture can be
pre-calculated in a pre-processing step or stored in a file asit is independent of the
data.

The first step projects the geometry into image space, simplyby rendering the ge-
ometry and pre-calculating the Phong light intensityLx,y ∈ [0,1] at every rendered
fragment with the coordinatesx andy. In the same step the tensors are projected as
well. When the tensors are symmetric, it is sufficient to transfer six floating-point

Fabric-like Visualization of Tensor Field Data on Arbitrary Surfaces in Image Space 13

values per vertex to the GPU. In our case, two three-dimensional texture coordi-
nates are used per vertex to upload the tensor information along with the geometry.
Assuming the tensorT is available on the GPU, it is possible to map the two main
directions to the surface described by the normaln at the current vertex using Equa-
tion 1. This projection is implemented in a per-vertex manner in the vertex shader. In
contrast, to ensure proper interpolation, eigenvalue decomposition and eigenvector
calculation together with image space projection need to bedone in the fragment
shader. Since the eigenvectors are without orientation, itis possible to have sign
flips between adjacent vertices. If the interpolation takesplace after the eigenvector
decomposition, these sign changes can render the interpolation useless. The projec-
tion step also includes mapping the noise texture to the geometry. Calculating each
vertex’ position in one voxel, using the equations from Section 2.3, can be done
along the tensor projection. The GPU interpolates those values for each fragment,
where it can be used to determine the noise texture element touse.

Since texture space is limited on our hardware, an NVIDIA GeForce 8800 GTS,
to four bound textures per rendering pass and active framebuffer object, it is impor-
tant to store as much information as possible in each texture. Most data are calcu-
lated during the projection step and need to be stored in, at most, four textures. Since
λ1 ≥ λ2, it is not necessary to transfer both values. Normalizing the vector(λ1,λ2)
using the maximum norm as defined in Equations 4 and 5, it suffices to transfer the
smallerλ2 becauseλ1 always is one. Also, the eigenvectorsv′λ1

andv′λ2
need to be

scaled since textures are used for transportation where each value must be in the
interval[0,1].

All intermediate calculations are done on the GPU using the OpenGL shading
language (GLSL) in an offscreenframebuffer object (FBO). Thus, we avoid the
need for rendering the geometry multiple times or even doingthose calculations on
the CPU, which leads to a large speed gain.

The next step applies an edge detection filter to the depth map, in our case a dis-
crete Laplacian filter kernel, which we have implemented on the GPU using GLSL
shaders as a separate offscreen rendering pass. We merge several input data into
one texture to decrease the total number of textures. channels of the edge detection
shader output texture.

We store the result of the edge detection filter, namely the depth buffer value
used to calculate the edges, the unprocessed input noise field, and the noise, which
has been mapped to the geometry’s surface, in the green, blue, and alpha channel,
respectively. By combining multiple data values into a single texture, we reduce
the number of texture look-up operations required in the consecutive steps. The
used input textures are the values calculated during the projection step, the input
noise texture and the depth buffer. The advection step, directly following the edge
detection, can “grab” its data directly from a single texture. During advection, it is
not advisable to have all values in one texture, since just the noise mapped onto the
geometryβtx,ty and the depth buffer are used. We also transfer the unprocessed input
noise in this texture, since our implementation is able to toggle which noise field is
used during advection because near-planar geometry does not require any complex
geometry mapping.

14 Sebastian Eichelbaum, Mario Hlawitschka, Bernd Hamann,and Gerik Scheuermann

The advection step advects the previously mapped noise texture using the eigen-
vector color map from the projection step.

Figure 4 shows the red and green channels of this output texture after several
iterations. Note that, due to data merging in the prior step,there need to be just three
input texture bindings per iteration, instead of four, for depth buffer, edge detection
texture, the eigenvector color map and the last iteration’soutput texture. Together,
both algorithms perform the advection iteration describedin Section 2.5. After some
iterations, the geometry-mapped noise gets advected more and more and is ready to
be processed for output.

The final output processing includes blending both advectedeigenvector fields
with light information and the geometry edges as well as clipping fragments us-
ing the depth buffer and possibly an additional postprocessing step. The last output
texture created during advection iteration is used together with the color map con-
taining lighting information, and the edge detection output texture for clipping and
edge blending to create the final visualization.

As mentioned in Section 2.6 several modifications are possible. Since the infor-
mation available in this step also contains the fractional anisotropy,λ2 and implicitly
λ1, it is possible to blend-in those values to emphasize additional tensor field fea-
tures. In Figure 5 both eigenvector fields are blended with the silhouettes and with
Phong luminance, calculated earlier in the projection step. Figures 6 and 7 show the
post processing possible in a further rendering pass using another postprocessing
shader.

3 Results

We have introduced a method to create a fabric-like surface tensor LIC in image
space, similar to the one introduced in [13]. We used ideas from [17] to transform
the algorithm into image space. Our implementation, using this method, is able to
reach frame rates high enough for real-time user interaction. The only bottleneck is
the hardware’s ability to render large and triangle-rich geometry. All further steps
can be done in constant time, see Table 1.

3.1 Artificial Test Data Sets

We first applied our method to artificial test data sets that have complex topology: a
torus, the Bretzel5, and the Tangle data set (cf. [16]), defined as implicit surfaces:

(1−
√

x2 + y2)(1−
√

x2 + y2)+ z2−0.125= 0, (21)

((x2 + .25∗ y2−1)∗ (.25∗ x2+ y2−1))2+ z2−0.1 = 0, and (22)

x4−5∗ x2+ y4−5∗ y2+ z4−5∗ z2+11.8+ w = 0. (23)

Fabric-like Visualization of Tensor Field Data on Arbitrary Surfaces in Image Space 15

Fig. 8 Analytic test data sets. We applied our method to isosurfaces and the scalar field’s Lapla-
cian to demonstrate the suitability for complicated surfaces. Shown are the final images using our
method for a sphere, torus, Tangle, and Bretzel5 data set (Equations 21–23).

We used the Laplacian on the surfaces as tensor fields. The results displayed in
Figure 8 show that neither the topology nor our artificial parameterization of the
input noise texture influences the quality of the final rendering.

3.2 Modification for Medical Data Processing

Even though many higher-order methods have been proposed, due to scanner, time,
and cost limitations, second-order tensor data is still dominant in clinical applica-
tion. Medical second-order diffusion tensor data sets differ from engineering data
sets because they indicate one major direction whereas the secondary and ternary
directions only provide information in areas where the major direction is not well-
defined, i.e., the fractional anisotropy—a measure for the tensor shape—is low. Al-
most spherical tensors, which indicate isotropic diffusion, occur in areas where mul-

16 Sebastian Eichelbaum, Mario Hlawitschka, Bernd Hamann,and Gerik Scheuermann

Fig. 9 An axial slice through a human brain: Corpus callosum (CC) (red), pyramidal tract (blue),
and parts of the cinguli (green in front and behind the CC) arevisible. The main direction in three-
dimensional space is indicated by the RGB color map, where red indicates lateral (left–right),
green anterior–posterior, and blue superior–inferior direction. The left–right structure of the CC
can clearly be seen in its center, whereas color and pattern indicate uncertainty towards the outer
parts. The same is true for the cinguli’s anterior–posterior structure. As seen from the blue color, the
pyramidal tract is almost perpendicular to the chosen planeand, therefore, secondary and ternary
eigenvectors dominate the visualization. Alternatively,we could easily fade out those out-of-plane
structures in cases where they distract the user.

tiple fiber bundles traverse a single voxel of the measurement or when no directional
structures are present. Therefore, we modulate the color coding using additional in-
formation: In areas where one fiber direction dominates, we only display this major
direction using the standard color coding for medical data sets, where x, y, and z
alignment are displayed in red, green, and blue, respectively. In areas where a sec-
ondary direction in the plane exists, we display this information as well but omit the
secondary color coding and display the secondary directionin gray-scale rendering
mode and always below the primary direction (cf. Figure 10).We use the method
of Anwander et al. [1] to extract surfaces that are, where possible, tangential to the
fiber directions. Hence, we can guarantee that the projection error introduced by our
method in the surface’s domain remains small. Even in areas where the fractional
anisotropy is low and the color coding does no longer providedirectional informa-

Fabric-like Visualization of Tensor Field Data on Arbitrary Surfaces in Image Space 17

Fig. 10 Diffusion tensor data set of a human brain. We employed the method by Anwander et
al. [1] to extract a surface following neural fibers and applied our method with an alternative color
coding that is more suitable and can be incorporated more easily into medical visualization tools.

tion, such as in some parts of the pyramidal tract in Figure 10, the texture pattern
still provides this information.

3.3 Mechanical Datasets

Our approach is not only applicable to medical datasets, butit can also be applied to
many other tensor data sets. Figures 11 and 12 show a slice in an earthquake dataset
and an analytical strain tensor field. The analytical data set is the well-known single
point load data set, where a single infinitesimally small point source pushes on an
infinite surface. The forces and distortions inside the object are represented by stress
and strain tensors, which are symmetric, second-order tensors. The earthquake data
set is a simulation of a single concrete pile in solid ground excited by a measured
earthquake pattern from the Kyoto earthquake (cf. Figure 12). As shown, the data,
material stress tensors, are defined on an irregular grid. Weextracted a plane per-
pendicular to the pile and show the tensor information in that plane. Due to the
time-dependent nature of the simulation, static images arequire complex.

18 Sebastian Eichelbaum, Mario Hlawitschka, Bernd Hamann,and Gerik Scheuermann

Fig. 11 A slice in the well-known single point load data set, showingthe symmetric strain tensor
at the surface of the slice.

Fig. 12 A concrete pile in solid ground. Left: the original grid shown in purple. Right: a slice of
the dataset showing the symmetric part of the tensor field.

3.4 Performance

As indicated before, the only “bottleneck” in the visualization pipeline that is
strongly geometry-dependent is the projection step. Sincethe surface needs to be
rendered repeatedly in case of user interaction, the performance measures of our
method consider repeated rendering of the geometry. The frame rate with geometry
not being moved and, therefore, making the projection step and the edge detection
step unnecessary, is considerably higher. Our implementation requires only few ad-
vection iterations per frame, which ensures high frame rates and smooth interaction.
To make the frame rates in the following tables comparable, user interaction is as-
sumed and, therefore, rendering a single frame always consists of

• one projection step, including geometry rendering;

Fabric-like Visualization of Tensor Field Data on Arbitrary Surfaces in Image Space 19

• one edge detection pass;
• three advection iterations; and
• one output processing pass.

As seen in the previous sections, fragments not belonging tothe geometry are dis-
carded as soon as possible without using deferred shading. This also leads to perfor-
mance gain in advection and output processing. In Table 1, a selection of data sets
with their corresponding number of triangles and tensors are listed. The frame rates
shown were obtained on an AMD Athlon(tm) 64 X2 Dual Core Processor 3800+
(512K L2 Cache) with a NVIDIA G80 GPU (GeForce 8800 GTS) and 640MB of
graphics memory at a resolution of 1024×768 pixels.

Figure Nb TrianglesNb Tensorsfps fps (Phong only)∅ Geometry Share
10 41472 63075 32 61 72%
5 58624 88803 30 60 69%
9 571776 861981 14 16 90%

Table 1 Frames per second (fps) for different data sets with given number of triangles and num-
bers of tensors. The frame rates are compared to simple rendering of the geometry using Phong
shading. The frame rates were obtained for an AMD Athlon(tm)64 X2 Dual Core Processor 3800+
(512K L2 Cache) with an NVIDIA G80 GPU (GeForce 8800 GTS) and 640MB of graphics mem-
ory at a resolution of 1024× 768 pixels. The geometry share relates the time used by the GPU
to rasterize the geometry to the overall rendering time, which contains all steps of the pipeline.
The time used to render the geometry clearly dominates the rendering times and reaches up to 90
percent of the overall rendering time even for medium-sizedgeometries.

The assumption that geometry rendering with projection is the weakest com-
ponent in this pipeline and that edge detection, advection,and output processing
perform at a data-independent frame rate is confirmed by the frame rates shown in
Table 1. It confirms that for large geometries, rendering thegeometry alone is the
dominant component. Since the vertex-wise calculations during projection are lim-
ited to tensor projection (Equation 1) and vertex projection (Equation 7), the most
expensive calculations during projection are executed perfragment. This means that
the expensive eigenvalue decomposition and eigenvector calculations are only re-
quired for fragments (pixels). To further decouple the calculation effort from the
geometry’s size, the depth test should be performed before performing the eigende-
composition. This goal can be achieved by first rendering theprojected tensors to a
texture, and computing the decomposition for visible fragments only. Nevertheless,
this is not necessary for our current data set and screen sizes where the time required
to render the geometry itself clearly dominates the time required to compute the tex-
ture pattern in image space. This can be seen in the increasing values in Table 1 with
increasing size of vertices rendered.

20 Sebastian Eichelbaum, Mario Hlawitschka, Bernd Hamann,and Gerik Scheuermann

4 Conclusions and Possible Directions for Future Research

We have presented a novel method for rendering fabric-like structures to visualize
tensor fields on almost arbitrary surfaces without generating three-dimensional tex-
tures that span the whole data set at sub-voxel resolution. Therefore, our method
can be applied to complex data sets without introducing texture memory problems
common to methods relying on tree-dimensional noise textures. As major parts of
the calculation are performed in image space, the performance of our algorithm is
almost independent of data set size, provided that surfacescan be drawn efficiently,
e.g., by using acceleration structures to draw only those parts of the geometry that
intersect the view frustum or using ray tracing methods.

Whether the surface itself is the domain of the data, a surface defined on the
tensor information (e.g., hyperstream surfaces), or a surface defined by other unre-
lated quantities (e.g., given by material boundaries in engineering data or anatomical
structures in medical data) is independent from our approach. Nevertheless, the sur-
face has to be chosen appropriately because only in-plane information is visualized.
To overcome this limitation, information perpendicular tothe plane could be incor-
porated in the color coding, but due to a proper selection of the plane that is aligned
with our features of interest, this has not been necessary for our purposes.

Especially in medical visualization, higher-order tensorinformation is becoming
increasingly important and different methods exist to visualize these tensors, includ-
ing local color coding, glyphs, and integral lines. Nevertheless, an extension of our
approach is one of our major aims. In brain imaging, experts agree that the maxi-
mum number of possible fiber directions is limited. Typically, a maximum of three
or four directions in a single voxel are assumed (cf. Schultzet al. [21]). Whereas the
number of output textures can easily be adapted, the major remaining problem is a
lack of suitable decomposition algorithms on the GPU. Image-space techniques, by
their very nature, resample the data and, therefore, require one to use such proper in-
terpolation schemes. In addition, maintaining orientations and assigning same fibers
in higher-order data to the same texture globally is not possible today and, therefore,
is a potential topic for further investigation.

Acknowledgements

We thank Alfred Anwander and Thomas R. Knösche from the Max Planck Insti-
tute for Human Cognitive and Brain Sciences, Leipzig, Germany, for providing the
human brain image data sets, and for fruitful discussions and comments, and Boris
Jeremić, Department of Civil and Environmental Engineering, UC Davis, for pro-
viding the earthquake data set. We thank the members of the Visualization and Com-
puter Graphics Research Group of the Institute for Data Analysis and Visualization,
Department of Computer Science, UC Davis, and the members ofthe Abteilung für
Bild- und Signalverarbeitung des Instituts für Informatik der Universität Leipzig,

Fabric-like Visualization of Tensor Field Data on Arbitrary Surfaces in Image Space 21

Germany.
This work has been supported by NSF grant CCF-0702817.

References

1. Anwander, A., Schurade, R., Hlawitschka, M., Scheuermann, G., Knösche, T.R.: White matter
imaging with virtual Klingler dissection. Human Brain Mapping 2009 (2009)

2. Blinn, J.F.: Models of light reflection for computer synthesized pictures. In: SIG-
GRAPH ’77: Proceedings of the 4th annual conference on Computer graphics and
interactive techniques, pp. 192–198. ACM, New York, NY, USA(1977). DOI
http://doi.acm.org/10.1145/563858.563893

3. Blinn, J.F.: Simulation of wrinkled surfaces. SIGGRAPH Comput. Graph.12(3), 286–292
(1978). DOI http://doi.acm.org/10.1145/965139.507101

4. Cabral, B., Leedom, L.C.: Imaging vector fields using lineintegral convolution. In:
SIGGRAPH ’93: Proceedings of the 20th annual conference on Computer graphics
and interactive techniques, pp. 263–270. ACM, New York, NY,USA (1993). DOI
http://doi.acm.org/10.1145/166117.166151

5. Chu, A., Chan, W.Y., Guo, J., Pang, W.M., Heng, P.A.: Perception-aware depth cueing for
illustrative vascular visualization. In: BMEI ’08: Proceedings of the 2008 International Con-
ference on BioMedical Engineering and Informatics, pp. 341–346. IEEE Computer Society,
Washington, DC, USA (2008). DOI http://dx.doi.org/10.1109/BMEI.2008.347

6. Delmarcelle, T., Hesselink, L.: Visualization of secondorder tensor fields and matrix data. In:
VIS ’92: Proceedings of the 3rd conference on Visualization’92, pp. 316–323. IEEE Com-
puter Society Press, Los Alamitos, CA, USA (1992)

7. Dick, C., Georgii, J., Burgkart, R., Westermann, R.: Stress tensor field visualization for implant
planning in orthopedics. IEEE Transactions on Visualization and Computer Graphics15(6),
1399–1406 (2009). DOI http://doi.ieeecomputersociety.org/10.1109/TVCG.2009.184

8. Enders, F., Sauber, N., Merhof, D., Hastreiter, P., Nimsky, C., Stamminger, M.: Visualization
of white matter tracts with wrapped streamlines. In: C.T. Silva, E. Gröller, H. Rushmeier (eds.)
Proceedings of IEEE Visualization 2005, pp. 51–58. IEEE Computer Society, IEEE Computer
Society Press, Los Alamitos, CA, USA (2005)

9. Grabner, M., Laramee, R.S.: Image space advection on graphics hardware. In: SCCG ’05:
Proceedings of the 21st spring conference on Computer graphics, pp. 77–84. ACM, New York,
NY, USA (2005). DOI http://doi.acm.org/10.1145/1090122.1090136

10. Hasan, K.M., Basser, P.J., Parker, D.L., Alexander, A.L.: Analytical computation of the eigen-
values and eigenvectors in DT-MRI. Journal of Magnetic Resonance152(1), 41 – 47 (2001).
DOI DOI: 10.1006/jmre.2001.2400

11. Hesselink, L., Levy, Y., Lavin, Y.: The topology of symmetric, second-order 3d tensor
fields. IEEE Transactions on Visualization and Computer Graphics3(1), 1–11 (1997). DOI
http://dx.doi.org/10.1109/2945.582332

12. Hlawitschka, M., Garth, C., Tricoche, X., Kindlmann, G., Scheuermann, G., Joy, K.I.,
Hamann, B.: Direct visualization of fiber information by coherence. International Journal
of Computer Assisted Radiology and Surgery, CARS, CUARC.08Special Issue (2009)

13. Hotz, I., Feng, L., Hagen, H., Hamann, B., Joy, K., Jeremic, B.: Physically based meth-
ods for tensor field visualization. In: VIS ’04: Proceedingsof the conference on Visual-
ization ’04, pp. 123–130. IEEE Computer Society, Washington, DC, USA (2004). DOI
http://dx.doi.org/10.1109/VIS.2004.80

14. Hotz, I., Feng, Z.X., Hamann, B., Joy, K.I.: Tensor field visualization using a fabric-like tex-
ture on arbitrary two-dimensional surfaces. In: T. Möller, B. Hamann, R.D. Russel (eds.)
Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data
Exploration. Springer-Verlag Heidelberg, Germany (2009)

22 Sebastian Eichelbaum, Mario Hlawitschka, Bernd Hamann,and Gerik Scheuermann

15. Iwakiri, Y., Omori, Y., Kanko, T.: Practical texture mapping on free-form surfaces. In: PG
’00: Proceedings of the 8th Pacific Conference on Computer Graphics and Applications, p. 97.
IEEE Computer Society, Washington, DC, USA (2000)

16. Knoll, A., Hijazi, Y., Hansen, C., Wald, I., Hagen, H.: Interactive ray tracing of arbitrary im-
plicits with simd interval arithmetic. In: RT ’07: Proceedings of the 2007 IEEE Symposium on
Interactive Ray Tracing, pp. 11–18. IEEE Computer Society,Washington, DC, USA (2007).
DOI http://dx.doi.org/10.1109/RT.2007.4342585

17. Laramee, R.S., Jobard, B., Hauser, H.: Image space basedvisualization of unsteady
flow on surfaces. In: VIS ’03: Proceedings of the 14th IEEE Visualization 2003
(VIS’03), p. 18. IEEE Computer Society, Washington, DC, USA(2003). DOI
http://dx.doi.org/10.1109/VISUAL.2003.1250364

18. Merhof, D., Sonntag, M., Enders, F., Nimsky, C., Hastreiter, P., Greiner, G.: Hybrid vi-
sualization for white matter tracts using triangle strips and point sprites. IEEE Trans-
actions on Visualization and Computer Graphics12(5), 1181–1188 (2006). DOI
http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.151

19. Purnomo, B., Cohen, J.D., Kumar, S.: Seamless texture atlases. In: SGP ’04: Proceedings of
the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pp. 65–74.
ACM, New York, NY, USA (2004). DOI http://doi.acm.org/10.1145/1057432.1057441

20. Schirski, M., Kuhlen, T., Hopp, M., Adomeit, P., Pischinger, S., Bischof, C.: Virtual tubelets-
efficiently visualizing large amounts of particle trajectories. Comput. Graph.29(1), 17–27
(2005). DOI http://dx.doi.org/10.1016/j.cag.2004.11.004

21. Schultz, T., Seidel, H.P.: Estimating crossing fibers: Atensor decomposition approach. IEEE
Transactions on Visualization and Computer Graphics14(6), 1635–1642 (2008). DOI
http://doi.ieeecomputersociety.org/10.1109/TVCG.2008.128

22. Tricoche, X.: Vector and tensor field topology simplification, tracking, and visualization.
Ph.D. thesis, University of Kaiserslautern, Germany (2002)

23. Tricoche, X., Scheuermann, G., Hagen, H.: Tensor topology tracking: A visualization method
for time-dependent 2D symmetric tensor fields. In: Eurographics 2001 Proceedings, Computer
Graphics Forum 20(3), pp. 461–470. The Eurographics Association, Saarbrücken, Germany
(2001). DOI http://dx.doi.org/10.1111/1467-8659.00539

24. Turing, A.: The chemical basis of morphogenesis. Philosophical Transactions of the Royal
Society of London237(641), 37 – 72 (1952)

25. Turk, G.: Generating textures on arbitrary surfaces using reaction-diffusion. In: SIG-
GRAPH ’91: Proceedings of the 18th annual conference on Computer graphics and
interactive techniques, pp. 289–298. ACM, New York, NY, USA(1991). DOI
http://doi.acm.org/10.1145/122718.122749

26. Weiskopf, D., Ertl, T.: A hybrid physical/device-spaceapproach for spatio-temporally coher-
ent interactive texture advection on curved surfaces. In: GI ’04: Proceedings of Graphics
Interface 2004, pp. 263–270. Canadian Human-Computer Communications Society, School
of Computer Science, University of Waterloo, Waterloo, Ontario, Canada (2004)

27. van Wijk, J.J.: Image based flow visualization. In: SIGGRAPH ’02: Proceedings of the 29th
annual conference on Computer graphics and interactive techniques, pp. 745–754. ACM, New
York, NY, USA (2002). DOI http://doi.acm.org/10.1145/566570.566646

28. van Wijk, J.J.: Image based flow visualization for curvedsurfaces. In: VIS ’03: Proceedings
of the 14th IEEE Visualization 2003 (VIS’03), p. 17. IEEE Computer Society, Washington,
DC, USA (2003). DOI http://dx.doi.org/10.1109/VISUAL.2003.1250363

29. Zhang, S., ?agatay Demiralp, Laidlaw, D.H.: Visualizing diffusion tensor mr images using
streamtubes and streamsurfaces. IEEE Transactions on Visualization and Computer Graphics
9(4), 454–462 (2003). DOI http://doi.ieeecomputersociety.org/10.1109/TVCG.2003.1260740

30. Zheng, X., Pang, A.: Hyperlic. In: VIS ’03: Proceedings of the 14th IEEE Visualiza-
tion 2003 (VIS’03), p. 33. IEEE Computer Society, Washington, DC, USA (2003). DOI
http://dx.doi.org/10.1109/VISUAL.2003.1250379

