
OpenWalnut – An Open-Source Visualization

System

Sebastian Eichelbaum1, Mario Hlawitschka2, Alexander Wiebel3,
and Gerik Scheuermann1

1Abteilung für Bild- und Signalverarbeitung,

Institut für Informatik, Universität Leipzig, Germany
2Institute for Data Analysis and Visualization (IDAV), and

Department of Biomedical Imaging, University of California, Davis, USA
3 Max-Planck-Institut für Kognitions- und Neurowissenschaften, Leipzig, Germany

eichelbaum@informatik.uni-leipzig.de

Abstract

In the last years a variety of open-source software packages focusing on vi-
sualization of human brain data have evolved. Many of them are designed
to be used in a pure academic environment and are optimized for certain
tasks or special data. The open source visualization system we introduce
here is called OpenWalnut. It is designed and developed to be used by
neuroscientists during their research, which enforces the framework to be
designed to be very fast and responsive on the one side, but easily extend-
able on the other side. OpenWalnut is a very application-driven tool and
the software is tuned to ease its use. Whereas we introduce OpenWalnut
from a user’s point of view, we will focus on its architecture and strengths
for visualization researchers in an academic environment.

1 Introduction

The ongoing research into neurological diseases and the function and anatomy
of the brain, employs a large variety of examination techniques. The different
techniques aim at findings for different research questions or different viewpoints
of a single task. The following are only a few of the very common measurement
modalities and parts of their application area: computed tomography (CT, for
anatomical information using X-ray measurements), magnetic-resonance imag-
ing (MRI, for anatomical information using magnetic resonance esp. for soft
tissues), diffusion weighted MRI (dwMRI, for directed anatomical information
for extraction of fiber approximations), functional MRI (fMRI, for activity of
brain areas indicated by the blood-oxygen-level dependence (BOLD) effect) and
electroencephalography (EEG, for activation of certain brain areas indicated by
electric fields).



Considering the different applications, it is evident that, for many research
areas, only a combination of these techniques can help answering the posed
questions. To be able to analyze data measured by the different techniques, a
tool that can efficiently visualize different modalities simultaneously is needed.
The software (called OpenWalnut) we present in this paper aims at exactly this
task. It does not only allow to display different modalities together but also
provides tools to analyze their interdependence and relations.

Throughout the paper, we describe the general software architecture, its
interactive multi-modal visualization capabilities, and how these make it es-
pecially suitable for the task of multi-modal analysis of measurements of the
human brain. To obtain a first overview of the context we review some related
software.

1.1 Related Software

There exist several visualization packages that are similar to OpenWalnut in
some aspects or that are designed for similar application areas as OpenWal-
nut. Of the packages we are aware of, MeVisLab ([MVL, 2010]) and Amira
([Amira, 2010]) are the programs that come closest to OpenWalnut. Both are
based on the principle of data flow networks and provide a graph widget that
allows the user to manipulate this graph directly. While there is a free version of
MeVisLab which provides a large subset of the tool’s rich feature set, there exist
three different variants of Amira. In addition to the two commercial variants of
Amira that slightly differ in focus, there is an academic version developed at
the Zuse Institute Berlin, which is freely available for collaborating institutes.

Another open-source tool for visualization of biomedical data is developed at
the Scientific Computing Institute (SCI) at the University of Utah. It is part of a
larger framework for simulation and visualization called SCIRun ([SCIRun, 2010]).
Similar to Amira and MeVisLab it is based on a data flow network.

A major difference of OpenWalnut compared to these tools is the visibility
and use of the data flow network (called module graph in OpenWalnut) to users.
As the complexity of module graphs can grow very fast, its construction yields
a fast increasing barrier for the user. In contrast to other open-source tools (like
MeVisLab and SCIRun), OpenWalnut can hide this complexity completely from
the user and is, therefore, also suitable for scientists who simply want to use
visualization tools for their data but are not familiar with or do not want to
deal with the visualization internals. SCIRun provides so-called power apps to
hide this complexity of the data flow environment. These, and similar macros
in MeVisLab are very helpful to provide simple user interfaces for special tasks.
However, they still have to be created with a script that uses the network in the
background. Later in this paper we will describe how OpenWalnut combines the
best out of two worlds: on the one hand, it provides an easy-to-use graphical
user interface (inspired by ParaView [Ahrens et al., 2005]), making it a plug-
and-play visualization tool. On the other hand, it provides an optional direct
access to the data flow network.

Another package for analyzing imaging data of the human brain is FSL



([FSL, 2008]). It consist of a number of loosely coupled tools and a main GUI
for starting sub-tools that serve different tasks like image registration, image
visualization, and segmentation. The last application we want to mention here
is MedINRIA ([MedINRIA, 2009]), which also provides modules for brain visu-
alization, fiber tracking, and processing of tracking data. All of these tools are
integrated in a common windows as user interface, where the window adapts to
the chosen task.

Another approach has been chosen by Kindlmann in the teem ([teem, 2009])
library. It is not a visualization tool in the sense that it does not provide an
interactive graphical user interface, but rather provides a large number of al-
gorithms that are useful for the analysis and visualization of medical imaging
data. Its command-line interface communicates through pipes and allows to
build simple visualization pipelines and store intermediate data as well as final
images in files. As it provides a C interface as well and as it is published under
a free software license, other tools, similar to OpenWalnut, can benefit directly
from teem’s data processing capabilities.

The choice for developing OpenWalnut from scratch came out of the needs
of the neuroscientists at the Max Planck Institute for Human Cognitive and
Brain Sciences (MPI CBS) in Leipzig: For their research, they wanted an open-
source tool, that is usable for people not familiar with data flow networks and
allows for multi-modal visualization of the human brain in a single, coherent
environment. Unfortunately, none of the above mentioned tools could fulfill all
these needs for them.

Finally, it should be mentioned that there exist even more visualization
tools that have a somehow similar approach concerning the user interface but
are fitted to other user communities (i.e. not bio/neuro/medical). Examples are
Vish [Benger et al., 2007], Mayavi [Enthought Inc., 2010], and the very popular
ParaView [Ahrens et al., 2005].

2 Design and Architecture

OpenWalnut’s design was mainly steered by two criteria: Firstly, it has to be
a powerful and easily expandable framework for visualization researchers allow-
ing them to implement algorithm prototypes and ideas quickly and easily while,
secondly, providing an intuitive graphical user interface for neuroscientist re-
searchers who include OpenWalnut in their daily research tasks. Whereas the
first criterion asks for a flexible and extendible framework, the second criterion
introduced the need for a high level of interactivity and responsiveness of the
application.

To achieve these ambitious goals, it is important to split functionality and
interface. Known and famous in the context of object-oriented programming
([Gamma et al., 1994]) this principle allows a powerful and complex framework
under the hood of a simple interface, the GUI in our case. This way, the addition
of new modules to the system does not require any changes in the GUI or other
parts of the software as they are integrated using abstract interfaces and provide



Figure 1: Software architecture. The graphical user interface sits on top of the
kernel and maps the module graph and its properties to GUI elements. The
modules utilize the core functionality and are handled by the kernel.

their parameters, settings, and I/O information using a standardized interface.
To furthermore allow the user to modify data, tune algorithm parameters, or
simply load and execute new algorithms while other algorithms are running, a
multi-threaded approach is nearly unavoidable. Modules and parts of the basic
framework should be able to work independent of each other. We avoid the
data pull principle, also known as polling, wherever possible, because it causes
many synchronization issues. We strongly focus on the push approach. Thus,
data changes are not queried by parts of the program, but they are propagated
automatically whenever a change occurs. Figure 1 illustrates the architecture of
our medical visualization system called OpenWalnut and its algorithm-centric
layout which is illustrated in the next section in more detail.

2.1 Architecture

This section covers the details of the software architecture, which is shown on
an abstract level in Figure 1, and its implementation. The core parts provide
the graphics engine, all basic data handling facilities, and basic mathematical
and utility functions to the modules. The kernel with the modules and the
module management is stacked on top of it and provides the actual interface
implementation used to map the module graph structure and its properties to an
end-user interface. From the module-programmer’s point of view, the framework



is designed entirely based on the aim to make programming easy and to enable
us to achieve results in a minimum of time. The data structures provided for
module parameters and data exchange allow the modules to provide information
using data and parameters in a very abstract fashion without any knowledge
of the actual user interface or other modules in the module graph. Therefore,
the programmer can focus on module programming, only; no boilerplate code
is needed for any kind of GUI interaction or graphics setup.

Graphics Engine

Starting bottom-up, let us first have a closer look at the graphics engine. The
graphics engine mainly provides an interface to OpenSceneGraph ([OSG, 2010]).
OpenSceneGraph is designed to be used in multi-threaded environments and
provides most of the tools and structures required for creating and modify-
ing graphics data. It contains tools to manage large triangle meshes, textures,
shaders, and encapsulates most current features of OpenGL ([Khronos, 2010]).
This ensures a maximum of flexibility during module development. One exam-
ple of our extensions of OpenSceneGraph in the Graphics Engine are flexible
color maps: They can simply be added to any other kind of rendering data, be
it geometrical data or not. It automatically manages the loaded data volumes
used for color-mapping, their ordering, blending factors, or the actual color map
of each volume. This helps the module programmer to provide surface coloring
in a clean and straight-forward way and fulfills the basic requirement to quan-
titatively analyze data.

Data Handler

The data handler provides the different kinds of data sets and data structures.
Besides this, the data handler provides supportive algorithms for analyzing data
or spatial partitioning of volume data. For example, the data handler provides
the tools to convert and scale volume data to be used as texture. These tex-
tures and scaling information are then used by the color-mapping facility in the
graphics engine to provide proper color mapping for loaded data on arbitrary
graphical scene graph elements.

Due to the strong focus of OpenWalnut towards medical, especially neuro-
logical data, most volumetric data is stored using an implicitly defined grid.
Besides this regular three-dimensional data, other kinds of grid structures exist.
OpenWalnut provides an abstract kind of grid which can be used to implement
nearly all other kinds of grid structures. As the grid is stored implicitly, addi-
tional transformations are stored inside the grid to ensure that the orientation
of a volume in space is right according to the dataset or previously applied
registration algorithms.

Additionally, the data handler provides the input and output interfaces to
read and write datasets from and to files.



Kernel and GUI

The core component of OpenWalnut is the kernel. It accommodates running
modules, organizes them in a data flow network (or module graph), and handles
all operations thereon. The most interesting part in the kernel is how modules
get integrated into the system. Generally, modules do not have any knowledge
about the GUI or other modules in the graph and run in their own thread.
Besides this, the literal meaning of graphical user interface might confuse at
this point. The task of the GUI, in our case, is mainly to provide the interface
to the kernel and to the module graph including its properties. This might
be a real graphical representation as OpenWalnut provides but can also be a
simple command-line interface or a script interface that do not provide graphical
output. This is essentially possible due to the abstract command-like interfaces
provided in the kernel. In the next paragraph, we will introduce the module
graph, the module’s communication possibilities, and how this interacts with
the GUI.

A module has exactly one possibility to interact with other modules residing
in the kernel. Modules can define so called connectors. These connectors define
the input and output channels of a module and define the exact type of data
this connector supports. This ensures that modules always get the right kind
of data to the correct input, are notified of changes to their input, and can up-
date their output data which may be intermediate data structures or graphics
stored in the scene graph. This way, changes in one module propagate along
the graph and wake up directly depending modules allowing them again to pro-
cess the new data. The typed connectors allow the kernel to decide whether
module inputs match to a module output. The kernel uses this to provide fa-
cilities to the GUI to get lists of compatible connections in other modules or
other connection possibilities. The kernel uses this information to create a so
called combiner which represents the connection or module creation request.
This combiner is the abstraction used by the GUI to display those options. As
each module and connector provides its name, icon, and description text, the
GUI can automatically create a button or menu entries using this information.
As module instantiation can take a while, especially if a module does some costly
initialization, applying a combiner is done asynchronously. While the kernel pro-
cesses a combiner, it uses callbacks to inform the GUI about its progress and
possible state changes. As mentioned earlier, the whole architecture is designed
to use the push mechanism to propagate data, states, and other information.
The kernel makes heavy use of this and provides callback and signaling mech-
anisms for nearly all possible operations. This ensures that the kernel does not
need to be polled somehow.

The remaining task is the communication of module parameters and other
settings to the user. During the design process, we always avoided that modules
have to know the GUI or need to specify their GUI representation directly. Mod-
ules therefore are equipped with a mechanism called properties. These properties
enabled the module developer to simply define parameters or settings without
any knowledge of their representation. A module can, for example, define a



property of type double with a name and a description associated with it. In
addition, it can define constraints, for example that it only accepts positive val-
ues, to exactly define valid values. The interesting part here is, that it is up
to the GUI to decide about the graphical representation of those parameters.
To stick with the double-precision floating-point property example, the GUI can
decide whether a slider or a text box is more appropriate for a property depend-
ing where it is displayed. It therefore mainly uses the constraints defined on a
property. Another example would be a property representing a four-times-four
matrix that can be represented by sixteen text fields or by several sliders defin-
ing rotation, scaling, and translations. Whenever the user modifies a property
in the GUI, the property automatically checks whether the new value is valid
by using the before-mentioned property constraints. If the value is invalid, the
property rejects it and the GUI can somehow show it to the user. If the value is
valid, it gets set for the property and the automatic change-propagation ensures
that all observers, especially the module owning the property, are notified about
the value change. A module can then wake up from its sleep state to handle the
new value. It is also possible to use these properties directly in scene graph
nodes in conjunction with OpenSceneGraph’s callback mechanism to directly
modify graphical entities. As the properties implement the observable pattern,
they can be used in a variety of ways.

With an increasing amount of fine-grained algorithm implementations in
modules, the complexity of needed GUI interaction increases tremendously if
results of algorithms need to be reused as input for other modules. To circumvent
the problem, OpenWalnut provides module containers. These containers can
accommodate multiple modules and forward their connectors and properties.
This allows a module container to look and behave like a normal module. The
module programmer can re-combine modules in a certain way to map a work-
flow or visualization use-case without revealing the underlying complexity. This,
on the one hand, hides complexity from the user and, therefore, makes the
software more intuitive and, on the other hand, allows programmers to reuse
existing modules and algorithms.

2.2 Control Panel — Hiding the Module Graph

As mentioned above, OpenWalnut hides its module graph by default. Instead,
user interaction is performed using a tree widget in the control panel (right in
Figure 2). While this tree still allows complete access to the module graph for
advanced users (not described in this paper), it provides a simplified interface to
OpenWalnut’s functionality for users who are not interested in the graph. The
tree widget acts similar to that of ParaView [Ahrens et al., 2005]: In the first
level of the tree the loaded data sets are shown. The branches below indicate the
modules that were applied to the data or other modules in higher levels of the
tree. To adjust settings of a specific module, a user selects the module and the
properties of the module appear in the “Settings” widget below. Clicking onto
a module also has a second use: It updates the toolbar (top row in Figure 2)
to show only the modules whose input connectors fit the output connectors of



Figure 2: Left: OpenWalnut’s default GUI. It mainly is split in three areas. The
navigation windows on the left showing axial, coronal and sagittal slices through
the anatomy which allow easy orientation inside the data. The main 3D view
contains the scene itself. Most of the user-interaction with several modules and
data can be done in the control panel on the right. It represents how the modules
are wired to each other with their connectors and provides an intuitive panel
for changing a module’s properties. Right: The GUI can be highly customized.

the selected module. Thus, the toolbar always presents all currently applicable
modules to the user. Clicking an icon in the toolbar adds the corresponding
module in a branch below the currently selected module in the tree and executes
the module. To ensure consistency, only leafs in the tree can be removed. This
ensures that no module looses the modules it depends on. Removing a module
undoes all effects that have been caused by the module.

3 Results and Conclusion

Today, OpenWalnut is a visualization tool heavily used by the Max Planck
Institute for Human Cognitive and Brain Sciences and the Max Planck Institute
for neurological research. Besides the usage as a pure visualization tool, it is also
a powerful and handy framework for visualization researchers. In this paper,
we gave an overview of OpenWalnut’s architecture and design which mostly is
interesting from the visualization researcher’s point of view. We have shown that
OpenWalnut uses several abstract methods to allow modules to communicate
and process data. For visualization researchers, this minimizes efforts and allows
them to focus on development of novel algorithms.

The module-graph allows the arbitrary combination of modalities even among
multiple subjects, which makes it a very handy tool for neuroscientists during
their research tasks for inter-subject and/or multi-modal analyses. The graph-
ical user interface only provides the editing features for the module graph and
can provide very distinct GUI elements for the module graph representation or
the representation of module parameters and settings. This way, the GUI can be
seen as a generalized view on top of the functionality of OpenWalnut. The GUI
itself is designed to be clean, structured and easy to understand but it provides



Figure 3: Two screenshots showing OpenWalnut’s selection tools. On the left,
regions of interest (ROI) have been used to select a part of the corticospinal
tract of a fiber-tract dataset. On the right, the navigation slices have been used
to select and view a slice in a DTI dataset in which superquadric tensor glyphs
are shown ([Hlawitschka et al., 2008]).

advanced elements for experienced user.
As OpenWalnut is completely open source, it can be used, extended, and

customized by everyone to fulfill their needs and provides a framework for testing
and implementing algorithms in a very easy way. Unlike other software tools, the
strict coding standard and documentation standard ensures a consistent code
style and a very detailed documentation of the involved classes. An extensively
documented example module helps developers to directly start programming
own modules. It is ideal for researchers in the area of visualization and a nice
and intuitive tool for visualization users.

The website http://www.openwalnut.org provides a lot of information,
screenshots, and source code.

Acknowledgments

The authors are grateful for the advice, help and ideas of Christian Heine,
Mathias Goldau, Alfred Anwander, and Thomas Knösche. This work was sup-
ported by AIF (ZIM grant KF 2034701SS8), NSF CCF-0702817, and NIH
R21EB009434-01S1.

References

[Ahrens et al., 2005] Ahrens, J., Geveci, B., & Law, C. (2005). Paraview: An
end-user tool for large data visualization. In C. Hansen & C. Johnson (Eds.),
Visualization Handbook. Elsevier.

http://www.openwalnut.org


[Amira, 2010] Amira (2010). Amira - visualize analyze present.
http://www.amira.com/.

[Benger et al., 2007] Benger, W., Ritter, G., & Heinzl, R. (2007). The concepts
of vish. In 4th High-End Visualization Workshop, Obergurgl, Tyrol, Austria,
June 18-21, 2007 (pp. 26–39).: Berlin, Lehmanns Media-LOB.de.

[Enthought Inc., 2010] Enthought Inc. (2010). Mayavi - 3d scientific data visu-
alization and plotting. http://code.enthought.com/projects/mayavi/.

[FSL, 2008] FSL (2008). FMRIB software library.
http://www.fmrib.ox.ac.uk/fsl/.

[Gamma et al., 1994] Gamma, E., Helm, R., & Johnson, R. E. (1994). Design
Patterns. Elements of Reusable Object-Oriented Software. Addison-Wesley
Longman.

[Hlawitschka et al., 2008] Hlawitschka, M., Eichelbaum, S., & Scheuermann, G.
(2008). Fast and memory efficient GPU-based rendering of tensor data. In
Proceedings of the IADIS International Conference on Computer Graphics
and Visualization 2008 (pp. 36–42).

[Khronos, 2010] Khronos (2010). The OpenGL Graphics System: A Specifica-
tion. URL: http://www.opengl.org.

[MedINRIA, 2009] MedINRIA (2009). http://www-
sop.inria.fr/asclepios/software/MedINRIA/.

[MVL, 2010] MVL (2010). MeVisLab - development environment for medical
image processing and visualization. http://www.mevislab.de/.

[OSG, 2010] OSG (2010). OpenSceneGraph. URL: http://www.

openscenegraph.org/.

[SCIRun, 2010] SCIRun (2010). SCIRun: A scientific computing problem
solving environment, scientific computing and imaging institute (SCI).
http://www.scirun.org.

[teem, 2009] teem (2009). Teem: Tools to process and visualize scientific data
and images. http://teem.sourceforge.net/.

http://www.opengl.org
http://www.openscenegraph.org/
http://www.openscenegraph.org/

	Introduction
	Related Software

	Design and Architecture
	Architecture
	Control Panel — Hiding the Module Graph

	Results and Conclusion

