

Sebastian Eichelbaum ${ }^{1}$ Mario Hlawitschka² Gerik Scheuermann ${ }^{1}$
Image and Signal Processing Group, University of Leipzig, Germany

Why? - State-of-the-Art

- Isn't standard line rendering sufficient for line data exploration?

Why? - Plain Coloring

Figure : Tractography data of a human brain: 5 m single lines - Do you see relations between bundles of lines? Do you see lobes and fissures?

Why? - Plain Coloring - The Problem

- Colors can provide coarse directional information:
- IFF you are used to the coloring and know its meaning
- What to do if the color encodes some other feature in the data?
- IFF you are used to this certain type of dataset
- What to do if not?
\rightarrow Because you have a mental image of this data
- Spatial relations and shape can only be seen by interacting with the scene!

Why? - Plain Coloring - The Problem

- Possible solution: shape from shading.
- See Ramachandran et al.
- Shading in computer graphics?
- local illumination provides structure
- global illumination provides relative, spatial information
\rightarrow Let's try!
V. S. Ramachandran. Perception of shape from shading. Nature, 331:163-166, 1988.

Why? — Phong Lighting

Figure : The illuminated lines approach (Zöckler et al. 1996, Mallo et al. 2005) can help to grasp global structures due to specular highlights, but provides no spatial relations.

Why? - Screen Space Ambient Occlusion

Figure : The ambient occlusion approach from CryEngine 2 (Mittring 2007) provides some spatial information, but is not able to handle very thin objects accurately.

Why? - Limitations

- Spatial relations only via interaction
- Current SSAO approaches do not work properly with thin geometry
\Rightarrow LineAO provides a solution!

What? - LineAO Introduced

Figure: LineAO provides global and local structure as well as spatial relations in bundles and between bundles without the need for interaction.

How? - Ambient Occlusion

- Defined for each point P on each surface of the scene
- Surface normal n at P defines hemisphere Ω
- AO is the amount of hemisphere surface occluded by other objects

How? - Screen Space Ambient Occlusion

- Discretized problem to solve in screen space
- Randomly sample the hemisphere S-times at multiple ω_{i}
- Utilize depth difference for visibility check
$\rightarrow V(\omega, P)= \begin{cases}1 & \text { if } d(P)-d(P+\omega)<0 \\ 0 & \text { else, }\end{cases}$
$\rightarrow A O_{s}(P, n)=\frac{1}{s} \sum_{i=1}^{s}\left(1-V\left(\omega_{i}, P\right)\right)\left\langle\omega_{i}, n\right\rangle$

Why? - Screen Space Ambient Occlusion

Figure : The ambient occlusion approach from CryEngine 2 (Mittring 2007) provides some spatial information, but is not able to handle very thin objects accurately.

What? - LineAO Introduced

Figure: LineAO provides global and local structure as well as spatial relations in bundles and between bundles without the need for interaction.

How? - LineAO Described

$$
\begin{aligned}
& \operatorname{LineAO}_{s_{r}, s_{h}, r_{0}}(P)=\sum_{j=0}^{s_{r}-1} A O_{\frac{s_{h}}{j+1}, j}\left(P, r_{0}+j z(P)\right) \\
& A O_{s, l}(P, r)=\frac{1}{s} \sum_{i=1}^{s}\left[\left(1-V_{l}\left(r \omega_{i}, P\right)\right) g_{l}\left(r \omega_{i}, P\right)\right] \\
& V_{l}(\omega, P)= \begin{cases}1 & \text { if } d_{l}(P)-d_{l}(P+\omega)<0 \\
0 & \text { else, }\end{cases} \\
& g_{l}(\omega, P)=g_{l}^{\text {depth }}(\omega, P) \cdot g_{l}^{\text {light }}(\omega, P) \\
& \Delta d_{l}(\omega, P)=d_{l}(P)-d_{l}(P+\omega) \in[-1,1] \\
& \delta(I)=\left(1-\frac{1}{s_{r}}\right)^{2} \in(0,1] \\
& h(x)=3 x^{2}-2 x^{3}, \forall x \in[0,1]: h(x) \in[0,1] \\
& l_{l}, \\
& g_{l}^{\text {depth }}(\omega, P)= \begin{cases}0, & \text { if } \Delta d_{l}(\omega, P)>\delta(l) \\
1, & \text { else. } \\
1-h\left(\frac{d_{l}(\omega, P)-\delta_{0}}{\delta(l)-\delta_{0}}\right), & \text { else }\end{cases} \\
& L_{l}(\omega, P)=\sum_{s \in \text { Lights }} B R D F\left(L_{s}, l_{s}, n_{l}(P), \omega\right) \\
& g_{l}^{\text {light }}(\omega, P)=1-\min \left(L_{l}(\omega, P), 1\right)
\end{aligned}
$$

How? - LineAO Described

- Prepare: lines and tangent data
- LineAO: for each pixel do:
- Sample surrounding using multiple hemispheres
- Classify occluders whether they are local or distant occluders
- Weight according to distance, surface properties and illumination
- Sum up all weighted occluders

Results - Features

- Greatly improved structural and spatial perception for the rendered line data in a very intuitive and natural way
- Simultaneous depiction of local and global line structures
- Renders in real time without pre-computation
- Consistency under modification and interaction

Results - Limitations

- LineAO is not suited for coarse line data
- LineAO does not work for two dimensional and quasi two dimensional data

Results - Performance

- LineAO does not depend on dataset complexity
- LineAO works in constant time when compared to dataset complexity
- LineAO only depends on the size of the screen
- Bottleneck is the GPU's line geometry processing power

Results - Radiosity versus LineAO

(a) Radiosity - 0.0000185FPS (15h per Frame)

(b) LineAO-17FPS

Results - Combined with Tube Rendering

(c) Tube Rendering

(d) Tube Rendering with LineAO

Results - Combined with Illuminated Streamlines

(e) Illuminates Lines

(f) Combined with LineAO

Results - Video

Results - Future Work

- Combination of LineAO with illustrative approaches.
- Adaptive sampling depending on line density in a pixel's surrounding, while estimating the density in screen-space.

OpenWalnut

Thank You! Questions?

Details - Weighting

$$
\begin{aligned}
& \operatorname{LineAO}_{S_{r}, s_{h}, r_{0}}(P)=\sum_{j=0}^{s_{r}-1} A O_{\frac{s_{h}}{j+1}, j}\left(P, r_{0}+j z(P)\right) \\
& A O_{s, l}(P, r)=\frac{1}{s} \sum_{i=1}^{s}\left[\left(1-V_{l}\left(r \omega_{i}, P\right)\right) g_{l}\left(r \omega_{i}, P\right)\right] \\
& V_{l}(\omega, P)= \begin{cases}1 & \text { if } d_{l}(P)-d_{l}(P+\omega)<0 \\
0 & \text { else, }\end{cases} \\
& g_{l}(\omega, P)=g_{l}^{\text {depth }}(\omega, P) \cdot g_{l}^{\text {light }}(\omega, P) \\
& \Delta d_{l}(\omega, P)=d_{l}(P)-d_{l}(P+\omega) \in[-1,1] \\
& \delta(l)=\left(1-\frac{1}{s_{r}}\right)^{2} \in(0,1] \\
& h(x)=3 x^{-2 x^{3}, \forall x \in[0,1]: h(x) \in[0,1]} \begin{array}{ll}
0, & \text { if } \Delta d_{l}(\omega, P)>\delta(l)
\end{array} \\
& g_{l}^{\text {depth }}(\omega, P)= \begin{cases}0, & \text { if } \Delta d_{l}(\omega, P)<\delta_{0} \\
1, & \text { else. } \\
1-h\left(\frac{d_{l}(\omega, P)-\delta_{0}}{\delta(l)-\delta_{0}}\right), & \text { els }\end{cases} \\
& L_{l}(\omega, P)=\sum_{s \in \operatorname{Lights}} B R D F\left(L_{s}, I_{s}, n_{l}(P), \omega\right) \\
& g_{l}^{\text {light }}(\omega, P)=1-\min \left(L_{l}(\omega, P), 1\right)
\end{aligned}
$$

- Weight each occluder with $g_{l}\left(r \omega_{i}, P\right)$
- Classify and weight according to distance and used hemisphere
- Incorporate local light reflected towards occluder, opposing the occlusion due to the added "light-energy"

